Parametric representations Hyperboloid
animation of hyperboloid of revolution
cartesian coordinates hyperboloids can defined, similar spherical coordinates, keeping azimuth angle θ ∈ [0, 2π), changing inclination v hyperbolic trigonometric functions:
one-surface hyperboloid: v ∈ (−∞, ∞)
x
=
a
cosh
v
cos
θ
y
=
b
cosh
v
sin
θ
z
=
c
sinh
v
{\displaystyle {\begin{aligned}x&=a\cosh v\cos \theta \\y&=b\cosh v\sin \theta \\z&=c\sinh v\end{aligned}}}
two-surface hyperboloid: v ∈ [0, ∞)
x
=
a
sinh
v
cos
θ
y
=
b
sinh
v
sin
θ
z
=
±
c
cosh
v
{\displaystyle {\begin{aligned}x&=a\sinh v\cos \theta \\y&=b\sinh v\sin \theta \\z&=\pm c\cosh v\end{aligned}}}
hyperboloid of 1 sheet: generation rotating hyperbola (top) , line (bottom: red or blue)
hyperboloid of 1 sheet: plane sections
Comments
Post a Comment