Parametric representations Hyperboloid



animation of hyperboloid of revolution


cartesian coordinates hyperboloids can defined, similar spherical coordinates, keeping azimuth angle θ ∈ [0, 2π), changing inclination v hyperbolic trigonometric functions:


one-surface hyperboloid: v ∈ (−∞, ∞)











x



=
a
cosh

v
cos

θ




y



=
b
cosh

v
sin

θ




z



=
c
sinh

v






{\displaystyle {\begin{aligned}x&=a\cosh v\cos \theta \\y&=b\cosh v\sin \theta \\z&=c\sinh v\end{aligned}}}



two-surface hyperboloid: v ∈ [0, ∞)











x



=
a
sinh

v
cos

θ




y



=
b
sinh

v
sin

θ




z



=
±
c
cosh

v






{\displaystyle {\begin{aligned}x&=a\sinh v\cos \theta \\y&=b\sinh v\sin \theta \\z&=\pm c\cosh v\end{aligned}}}




hyperboloid of 1 sheet: generation rotating hyperbola (top) , line (bottom: red or blue)



hyperboloid of 1 sheet: plane sections







Comments

Popular posts from this blog

Gigantomastia Breast hypertrophy

History Conagra Brands

Demographics Union County, Tennessee